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Abstract

We test the performance of five different interface preconditionings for domain-decomposed

convectio,-diffusion problems, including a novel one known as the spectral probe, while varying

mesh parameter, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect

ratio. The preconditioners are representative of the range of practically computable possibilities

that have appeared in the domain decomposition literature for the treatment of nonoverlapping

subdomains. We demonstrate through a large number of numerical examples that no single precon-

ditioner can be considered uniforndy superior or uniformly inferior to tile rest, but that knowledge

of particulars, including the shape and strength of the convection, is important in selecting among

them in a given problem.

1. Introduction

The solution of linearized convection-diffusion equations of the form

_'.re- V-cV¢ = f, (1.1)

where ¢ is a conserved quautity (energy, mass fraction, momentum component, etc.) transported

under the influence of velocity tield ?'and (liffnsivity ( is required throughout computational physics.
Discretization by finite differences or finite elements results in a large sparse system of algebraic

equations whose solution can be demanding in computational resources and is one of the many

driving forces h_r parallel computation. Because the strength of coupling between a pair of dis-

crete unknowns governed by an equation like (1.1) decays with physical separation (more or less

isotropically depending upon c-'), it is natural to partition the problem spatially when looking for

concurrency in the solution algorithm. Parallelism is, in fact, only one of several compelling reasons
for tile recent surge of research on domain decomposition algorithms exemplified by the volumes [9,

10, 17]. Others include a powerful theory describing optimal or near-optimal algebraic convergence

rates for hierarchical preconditioners of domain-decomposed type, the convenience of composite ar-

ray d_ta structures for describing complex shapes, a desire to employ solution techniques and qttali,ty.
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software restricted to problems with various local uniformity requirements (,_hich are subp/'oblems

with regard to (1.1)), and .sheer problem size; whi('h carl ultimately push numerical ill-conditioning
and serial memory trallic beyond acceptable limits.

Preconditionings for interracial degrees of freedom have been the focus of much atte_ation dur-

ing the development of (lomain dccoml)osition methods, and deservedly so, since interfaces of lower

dimension than the origill_d domain of definition of the partial differential equation are created by

a predominant form of nonoverla:l)ping decomposition related to nested dissection of the underlying
finite difference or finite element matrix operator. We refer generically to such forms of domain

decomposition as Schur iteratiou, since elimination of the subdomain interiors leaves a Schur com-

plement systeni fol_the separator un]_nowns_ h-d(i[{i0ii'M [iiterest in interface preconditioning comes

from the fact that the classical Schwarz iteration, the prototype for overlapping decompositions,

has been placed into correspon(ieuce with a stationary iteration having as unknowns the interra-

cial degrees of freedom of a nonoverlapping decomposition [6, 11]. This correspondence between

Schwarz and Schur methods enriches the study of domain decomposition algorithms in general,
because properties which are lnore easily analyzed in one framework may be extended to the other.

The present contrib_ltion focuses ou the l)erf()rmance of a variety of easily computed Schur
complement preconditioners in a rather sl)eciaLl ctJntext: a single interface dividing a rectangle into

two subrectangles in which the capability of performing exact solves is presumed. We consider a

scalar convection-diffusion ol)erator under a uniform or "terraced" diffusion coefficient and a variety

of continuity-satisfying [low fields chosen to exhibit the relative advantages and disadvantages of

the preconditioners. The pristille nature of the prol)lem class allows focusing on the quality of the

interfacial preconditioning, alone, in four different limits: large discrete problem size, large Reynolds

(or Peclet) number, large diffusion coefficient ratio, aud large aspect ratio. (The Reynolds number

is the dimensionless ratio _'l/g, where e is a characteristic velocity, l a characteristic length, and g a

characteristic diffusivity. Large wdues cha_z'acterize strongly nonsymmetric, convectively-dominated

systems.) Any or a]l of these limits could be important in a production engineering code whose
parallelization might be sought through domain decomposition. We show that no single interface

preconditioner is best in all limits, and therefore sock to qualitatively rank their sensitivities to

these limits and identify realms of superiority.

Several different coefficient fields _" and ¢ are studied because the performance of all of the

preconditioners are sensitive to them and unjustified optimism or pessimism can result from too

narrow a study. Two of our five l)recouditioners have been amply studied previously in the sym-
metric positive definite context of pure diffusion. There have been very few studies of any of them

in the convection-diffusion context, and since this case is also relatively untouched by theoretical

approaches, apart from spatiaily invariant velocity distributions, numerical studies are continuing

to yield interesting information.

We comment briefly on a few other issues whi('b bear on our choice of scope. It is possible to

set up an alternative framework for nonoverl_q)ping decompositions in which interfacial coupling

is simply discarded, or partially accolluted for iu ways that do not require special treatment of a

separator set; see, e.g., [l] and [26]. In so doing one obtains the advantages of greatly simplified

codillg and less inter-domain data traffic pet" iteration. Problems dominated by local !nl_eractions
can be haildled quite acc('l)tab[y by decout)ling; see e.g., [2311 Ilowever, in problems which are

diffusively dominated (more fundameutaily, problems whose Green's functions have support which

is not substantially confined within artifi(:ial sul)dotnarin boundaries), such approaches ha_e limited

applicability to large numbers of gridpoints and/or subdomains.

The speci'aJ case of a single interface obviates discussion of preconditioning the set of vertices

where multiple interfaces illtersect. Vertex l)recollditioning is very important but also more readily

prescribable, at least in two dimensions. A coarse grid problem for the vertices having the same
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structurea.sthe undecomposedoriginMl,roblemcanbederiveddirectlyfrom the differential op-

erator by employing a hierarchical basis discretization. The interface system, on the other hand,
corresponds to a pseudo-differential operator, the numerical analysis of which is relatively less well

developed in the presence of convective terms. In a preconditioner consisting of component blocks

corresponding to subdomaizls, w_rtices, and interracial edges (and interracial planes in three dimen-

sions), any one block can limit the overall perfor,nance. A study of interface preconditioning is
thus necessary, but not sufficient, for gl,iding the construction of complete preconditioners.

Finally, as to the relevance of our scope, we note that practical problems often involve several

simultaneous convection-diffusion operators li,kked through coefficients or source terms. Continued

study of the.scalar case is, however well motivated by techniques such as the alternating block

factorization [4] which successfully employ scalar preconditioners inside of a change of dependent
variables which partially decouples the original system.

The algorithmic framework of our experiments is described in Section 2, followed by intro-

duction of the five interf,Lce preconditioners and a brief discussion of their properties in Section 3.

Section 4 contains I)erformance measurements in the form of iteration counts along several axes of
problem parameter space. We draw some conclusions a lid recommendations in Section 5.

2. Schur Domain Decomposition Methods

We take as our starting point the matrix equation Ax = b arising from a finite difference dis-

cretizatioJl of of (1.1). The domain decomposition method we employ is an iterative substructuring
method consisting of three elements: (1) the operator A whose inverse action we would like to

compute with an accuracy commensurate with the discretizatlon, (2) an approximation B to A,

whose inverse action is computatioually convenient to compute, and (3) an acceleration scheme for
the preconditioned system which requires only the ability to form the actions of A and B -1 on a

vector. In all cases reported herein, A is derived from a second-order central differencing of the

diffusion term and a first-order upwind differencing of the convection term. Extensions to second-

order upwind differencing have been carried out in, for instance, [27]. We us6 right-preconditioned
GMRES [30] as our iterative acceleration scheme, that is, we solve AB-ly = b by the applying the

standard GMRES algorithm to (AB -1) then recover x through the solution of Bz = y.
GMRES is guaranteed to converge in a finite number of steps for nonsingular AB --'1 even in

the presence of nonsymmetry or indefiniteness, assuming exact arithmetic. The maximum number

of steps required is the number of distinct eigenvalues of the preconditioned operator. This con-

vergence result depends upon dynamically storing a complete basis for the Krylov space built from

powers of AB -_ acting on the initial residual vector. For large problems, this much memory can

easily become excessive, and GMRES is often truncated or restarted [30] in cases where it does

not converge within a predeternfined nuulber of steps, llowever, we allow full GMRES iteration

in our experiments, up to some maximum number of steps (set at 30 herein) which is sufficient in

all but two cases. Because fewer than 30 steps are almost always sufficient, we effectively suppress

fi'om consideration the restart or truncation t)ar_meter. This parameter can be important in a

"production" setting.
The substructuring enters through the manipulation of A and B into forms which possess

large block zeros, for the sake of concurrency or for some of the other reasons noted in the intro-

duction. For elliptic operators such as (1.1), A is irreducible; hence there are no block triangular

permutations, llowever, if the domain is cut by the removal of a swath of gridpoints as wide as the

senti-bandwidth of the stencil, two large subl_roblems are created whose only coupling is through

the small removed set. For fiw,-point stencils on logically tensor product grids, we may choose

a single row or column of unknowns. (A two-point-wide generalization has been studied for the
thirteen-point biharmonic stencil in [8].) Ordering the separators last, we obtain
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0Ax = ,4,_ A_3 x2 = b2 = b. (2.1)

\:131 A32 A33 x3 b3

Ilere, All and A:2 are five-point operators with bandwidth no larger than that of the naturally

ordered original system, but A33, which renders the coupling between the points on the interface

itself, is tridiagonal. The other blocks contain the coupling of the separator unknowns to the

subdomains, and vice versa. From the point of view of the continuous operator they represent
derivatives in directions normaJ lo the intcrI'a.cc.

Block Gaussian eliminatiou of the unknowns x I and x? would yield the Schur complement
q

system
Cx3 = d (2.2)

for x3_ where

and

C = A33- A:uAI-IIAI3- A32A21A23 (2.3)

d b3- A31AIlIbl - -I= A32A22 b2. (2.4)

If x3 can be found, the subdomain problems are decoupled, l[owever, direct computation of the

generally dense C in order to solve (2.2) requires as many pairs of exact subdomain solves as there

are degrees of freedom in x3, which is generally prohibitive. It is also unnecessary inasmuch as

iterative techniques have been devised which require many fewer iterations than the dimension

of x3, and which furthe.rnmre require only approximate subdomain solves in each iteration. As

mentioned already, we shall ignore the option of inexact subdomain solves in the sequel, effectively

reducing the iterations I,o the interface, but we nevertheless make use of a general purpose code

which retains the interior degrees of free(Ion, in carrying out the numerical experiments.

We consider two families of preconditioners B, the structurally symmetric

(A0Bt = 0 A2'_ 0 0 i A_-_A23

A31 A32 M 0 0 I

= A22 A23

A.u A32 M + .4:uA_-jlA_3 + A3.2A_A23

where M approximates the Schur conll)lement C (2.3) of All and A22 in A, and the simpler block

triangular

/12 =
A I I 0 A13 '_

0 .422 A23] •
0 0 M/

The factorized form of 111 above shows that the cost of applying the inverse of B1 is one solve

with M and two solves eac], with A jr and A.zz. There is an inherent sequentiality to the subdomain

solves, however, since the system involving M in the left fa,ctor requires data from the first set of

subdomain solves. The inverse of B2 can be al)l)lied to a vector at the cost of solving one system

each with M, All, and Ae,_. The system for M is solved first, followed by independent solves in

the subdomains which use tl_e interface values as boundary conditions.

We assume throughout that the Aii are invertible. (This is certainly a reasonable requirement

for a discrete convective-diffusive operator and is guaranteed herein for all Reynolds numbers by

upwind differencing.) Under this assumption, C is also invertible [15].
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(AmA = AFf_

whence

For matrices arising from stm_dard quasi-uniform finite element discretizations of elliptic partial

differential equations, A has a condition number of O(h-2), whereas C has a condition number of

O(h -1) [5, 29]. The equiwdence of conjugate gradient iterations on the Schtir complement system
with preconditioner M and on the full substructurcd matrix A with preconditioner B1 wa, shown

in [24].

For reference in Section 4, it is interesting to note the forms of tile preconditloned'operators
AB( l, and AB_ I. In order to make tile formulae more readable, we combine the independent

subdomain solves into a block matrix An, and denote the separator block by At, to re-express the
above matrices as

A.I.).,:(Ao )AF ' Al'l_ M + Ai.f_A_] A_F ' 0 '

and

1_ -1 (A_I+A_IAiwM -IArnA_ l -A_IA_wM -l)= _ M_tAr_A_I M-1

( t_] t AnlAnr M-1 )
B_ 1 t -

,_ = .M_I •

From these expressions it can easily be verified that

( I 0 ) andAB_l ( I 0 ) (2.5)'lB_l = (I- C,I_I-t).'tI'_A_ l CM -i = AI'f2A_ 1 CM -1 "

It is evident that if C is exactly rel)resented by M, then AB{ 1 reduces to the identity, and

an iteration involving :IB_ 1 will converge in one step requiring two sets of subdomaln solves.

An iteration involving AB7_ l, on the other hand, will converge in two steps (from art arbitrary

initial guess) if M = C, but each step requires only one set of subdomain solves. (These iteration

counts do not include the filial solve with either Bt or B2 which is required to unwind the right-

preconditioning.) More generally, if M is sulficiently close to C in the sense that the lower-left block
of tile structurally symmetric system is sm_dl, 1](I - CM-1)[] << 1, we expect that an iteration

based on B2 will require an extra iteration relative to an iteration based on B1. Conversely, if M is

a poor preconditioner for C, so that the lower left block becomes large, the use of the structurally

symmetric system could require more iterations than the use of the block triangular system. Both
behaviors are illustrated in Section 4.

Note from (2.5) that AB_ ! and AB._ l ha.re identicM spectra, as Arnoldi estimates for the

eigenvalues obtained as a by-product of the GMRES iterations also show. However, Krylov se-

quences based on the respective operators will in general differ, and there is little that can be said

about which method will lead to faster convergence for general 5' if M and C are not sufficiently
close.

For some of the preconditiouer components M we consider, the overall preconditioning process
is numerical unstable, as will be seen in Section 4. Even though the iterations involving AB -1 may

converge, the final result after unwinding tlle preconditioning may have few or even no significant

figures. For tiffs reason, we always check tile actual residual ][f-Azl] at the end of each calculation.

3. Schur Interface Preconditioners

We proceed to delineate five alternatives for the lnatrix M.
q

3.1. Interface Probe Preconditioner

Interface probe preconditioning is a family of methods for approximating the true Schur com-

plement C defined in (2.3) by low bandwidth matrices. We use the nomenclature IP(k) to denote
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tile approximationsequenceM = At" - Ek, k = 0, 1,2,..., where Ek is a matrix of semi-bandwidth

k which produces tile same action as Ar_A_IAfw on a set of 2k + 1 test vectors. Note that when A
arises from a five-point finite-difference discretiza.tion both tim IP(O) and IP(1) preconditiohers are

tridiagonal because A_, is. As k in(:reases beyoll(t _, M acquires additional diagonals. Selection

of test vectors of appropriate sl)arsity l)atterns e,kal)les the (:oellicients of E/_ to be read directly off

of the l)roduct involving AI'_A_'Afw, hence the term "probe." We report only on the row-sum

conserving IP(0) herein, ll'(l) is only rarely more cost effective than IP(0) over the range of non-""

symmetric scalar five-point stencil problems studied herein, and a law of diminishing returns sets
in as k is increased.

IP(0) was invented independently l)y Chan and Eisenstat in 1985, immediately generalized to

IP(k) in [14], and adopted for w_riable coefficient symmetric problems in [24] (where it was called
the "nmdified Schur complement" method) and for nonsymmetric problems in [25, 26]. Symmetric

versions of IP(0) and IP(1) have also bcen employed in [2, 3]. Many algebraic and spectral properties

of banded and circulant probe preconditioners are derived in [13]. The interface probe technique

has the advantage of being purely algebraic in character, and hence capable of being defined for

arbitrary operators. It is aesthetically pleasing that the tunable parameter k may be taken from

the crude approximatlon of 0 all the way to the full bandwidth exact solution. It has Mso been

generalized in a straightforward way to multi,:omponent systems [26]. ttowever, IP(k) for low k

is not expected to be particularly useful for arbitrary matrices. The low k limit is motivated by

the observation that the elements of C decay rapidly away from the diagonal for elliptic problems.

In sufficiently simple elliptic I)roblems (e.g., those possessing constant coefficients) preconditioners

described below taking better advantage of this structure are also possible, leaving IP(k) large

but not unlimited regions of problem parameter space in which to exercise. Interface probing

has the advantage of being automatically adaptive to spatial variation in the coefficients but the

disadvantage of not possessing the property of spectral equivalence, a consequence of which is that

it degrades as the mesh is refined. Experimentally [24], the condition number of the preconditioned

Schur COml)lelnent system for the Lal)!acian goes like h -I/2, and this bound is conjectured to be

the best attainable for any tridiagonal matrix based on exl)erimetlts with an optimization code in

[20]. An h -l/'_ bound is proved fore circt, lant l)robe-I)reconditioued system with periodic boundary
conditions on the boundaA'ies normal to the interface in [13].

3.2. Spectral Preconditioner

The spectral preconditioner is an exact eigeudecomt)osition of a single interface, rectangular

domain, constant coefficient convection-diffusion operator described in [12] as a generalization of [7].

We consider only the Dirichh't case herein, but generMizations to Neumann boundary conditions axe

straightforward. Let an interface of u interior nodes (i.e., h -l = n + 1) separate two subdomains of

the same discrete length, and discrete heights ml and m2, respectively, over all of which is satisfied

the difference equation

axi_l,j + bxi,j + cxi+l,j + dxi,i+l + exi,j-i = fi,j, (3.1)

where i denotes the free index along the interface. We may write M = DWAW-1D -1, where W

is the discrete sine transform of length u with matrix representation

[W]d = _ sin ijrch,

D is the diagonal matrix with elements

II 1,: (-")('-')/:,
\(2/

(3.3)
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Figure 1: Modes of the Dirichlet problem (3.1) for n = 15.

(a) ]a/c I = l, j = 1; (b)la/c[ = 1.21, j = 1; (c)la/cl = 1,

j = s; (d)I./cl = 1.21, j = s; (e)la/cl = a, j = 15; (f)
la/cl = 1.21, j = 15. (The left-hand column of modes are for

tile case or no tangenttial convection.)

and A is a diagonal matrix with elements

[A]i = _ 7?,+ ' -t- 1-- .y?2+-----Y}¢[b + vf_(2 - a/)] 2 - 4de,
(3.4)

where, in turn,

and

(!+)a_ = ,l_il, 2 _2(n + 1) "

(3._)

t

(3.6)

The derivation or these formulae (see [12] rot full details) begins with the observation that the

columns of the matrix (DW) _tre tlie eigenvectors of the tridiagona] matrix formed by the coefficients

along the ittterface, viz., tri(liag(a, b,c). Sample such modes are plotted in Figure I for two different
values of the ratio [aft:[ corresl)on,ling to zero _tnd constant nonzero tangential components of the

convection. The nonvanishing first-derivative convection term has the effect of multiplying the

sinusoids by an exponential.

The philosophy of using the spectral preconditioner for arbitrary interfacial systems is that

of solving an approxim_Lte (constant coefficient) problem exactly, rather than an exact (general
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coefficient) problem approximately. One of its advantages is that it call be defined without requiring
the ability to solve probh'ms in adjacent subdomains, as required by the interface probe technique.

All that is needed is some averaging rule to obtain the coefficients a through e from the data of

the associated regions. All our tests herein employ a simple average of the coefficients along the

interface alone. Another advantage is its automatic adaptivity to domain aspect ratio, since the
boundary conditions are built into the derivation. We note that application of M -1 is inexpensive:

two one-dimensional F1;'Ts sandwiched between three diagonal matrix multiplications.

3.3. Spectral Probe Preconditioner

The spectral probe preconditlouer, introduced here for the first time, is conceptually a hybrid
of the interface probe and the spectral preconditioners. Spectral probing assumes a form for the

eigenvectors of C like that derived for the constant coefficient operator of the previous subsection

(again based on spatially averaged coefficients), but then populates the diagonal matrix A by

probing the true Schur co*nplement, so that some spatial adaptivity is accommodated within a

spectrally equivalent framework.

We set M = DWAW -1D -l where W and D are defined as above (or where D is alternatively

simply set to the idez,tity matrix, corresponding to a = c, for reasons which will become clear in

Section 4). A is then determined by probing with the interface vector of all l's. This is the same as

the standard test vector for IP(0). To be explicit, we read off the elements of A from the equation

W-I D-1CDW , 1 = A, 1.

The action of C is computed by means of a pair of subdomain solves using D'W • 1 as the i_terface

boundary condition. Note that the spectral probe preconditioner reduces to the spectral precon-

ditioner in the constant coefficient Dirichlet case, because then C is exactly diagonalized by the
given similarity transform.

3.4. Laplacian Square-root Preconditioner
As a ba_e-line reference, and because it appears throughout the literature, we include tests

with a method based on the square-root of the one-dimensional Laplacian operator, easily written
as:

M = WAW -1,

where A is now the diagonal matrix with elements [A]i= 2v/-_. We sometimes denote this oper-
ator as l)ryja's preconditioner because of its popularization in this context in [16]. More general

discrete antecedants were considered in [18]. It is difficult to pinpoint the discovery of the spectral

equivalence of this operator to the Schur complement of the l,aplacian, since the continuous analog
of this equivalence has bcen known for some time. This preconditioner is expected to be good in

diffusion-dominated problems, or in the discrete limit h --+ 0.

Note that this preconditioner is distinct fl'om the spectral preconditioner (§3.2) for the Lapla-

clan. Dryja's preconditioner achieves a constant bound on the number of iterations as the mesh is

refined, but the constant is generally higher than that achievable with the coefficient and aspect

ratio adaptability of the previous two tech niques. The literature also records two important prec0n-

ditioners intermediate between the Dryja and spectral techniques, namely [19] and [5]. The latter,

the Neumann-Dirichlet preconditioner, contains some of the adaptive capabilities of the spectral

preconditioner since it relies on subdomain solves in its construction and hence contains much coeffi-
cient information. It is similar to probing techniques in this regard. In fact, the Neumann-Dirichlet

precondltloner is exact in problems possessing symmetry across the separator set. All four of the

techniques of [5, 7, 16, 19] were tested in [24], but for brevity we test only the extremes here.

3.5. Tangential Preeonditioner

Finally, we consider a simple preconditioner possessing partial adaptivity, a lower-dimensional

restriction of the operator to the interface created by setting all of the normal derivative terms in
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the operatorto zeroandretainingjust tile remainderin M. For (1.1) these are just the tangential

derivative terms. The obvious motivation for this technique is that it is simple and is expected

to work well in tile limit of strong convection along the interface, a linfit which turns out to be

troublesome for the spectral aml sl)ectral probe l)reconditioners. Ill addition, its very satisfactory

bellavior in tlle multidomain experiments in [21] recommend it. For reasons not yet theoretically

explained, it performs very well in conjunction with the block triangular form of the the overall

preconditioner described in Section 2. A nfinor disadvantage is its requirement of partial knowledge
of the differential operator, rather than simply the elements of the discrete operator A, To be

specific, it is necessary to store separately tile contributions to A arising from the normal derivative

terms, and all other terms.

4. Numerical Experiments

All of the experiments to follow excel)t for those of Table 14 are posed on the unit square (l = 1

in the definition of the Reynolds number, Re) with homogeneous Dirichlet boundary conditions.

The five different coutinuity-satisfying flow fields tested are shown in Figure 2(b)-(f), along with

a purely (liffusive baseline case (Figure 2(a)). When Reynohls numbers are reported below for the
variable coefficient cases, they are always based on the maximum velocity in the region. (See [28]

for details on the jet and cell flows and other experiments on this particular problem set.) The

interface divides the rectangle into equal upl)er and lower portions, as marked on the figure in the
dashed line. In addition to cases with constant diffusion, we study in §4.3 a convectionless case

with piecewise constant, but disparate, diffusivities on either side of the interface.

There is a constant source term of unit strength in the interior. Although it is special, a zero

initial guess for the solution vector is employed throughout, since this will usually be the natural

choice when (1.1) arises for a Newton increment, as part of an outer nonlinear iteration. The

performance of the preconditioners is measured by the number of iterations required to reduce the

initial residual by a factor of I0 -a, regardless of tile mesh resolution. The tables of iteration counts

are groupe<l by subsections into four sets of experime,lts.

4.1. Sensitivity to Mesh Refinement

Tables 1 tl_rough 6 examine a constant Re situation as the (uniform) mesh is refined by three

successive powers of 2. Of course, the <liscrete diffusion term, the Laplacian, becomes more and
more dominant with each refinement of the grid, since it scales as h -2 as compared with the h -1

scaling of the convection term. This is the asymptotic limit for which D and its relatives S and

SP are designed. In tile lirst table, the La.l)lacian is studied in isolation (Re = 0). In the next
five convective cases, Re = 16. For the coarsest mesh (h -1 = 8), the contributions to the diagonal

of the discrete operator fl'om the two terms are equal at this Reynolds number (the cell Reynolds

number, Rec -- ch/e, is 2).

Structurally Sy,nmetric

h -1 " IP S I SP D I T

8 4 I I 1 51 5

16 6 1 I 1 5 I 7

32 9 1 I 1 5 I 9

64 i 11 l I 1 4 I II
I ..............

Block Triangular
IP S SP D T

--5- 2 2 4 1-4-4-q
7 2 2 5 I 4

9 2 2 5 I 4

12 2 i 2 5 I 4
I

Table 1: Iteration counts for the pure diffusion problem as a

function of mesh parameter for two different preconditioner
structures and five difl'erent interface blocks.
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Figure 2: Streamfunction contour plots of tile two-dimen-
sional flow fields represented by e' in the numerical experi-

ments. (a) Pure Diffusion; (b) Normal Convection; (c) Tan-

gential Convection; (d) Skew Convection; (e) Jet Convection
(the domain is the right half of a symmetric flow field); (f)
Cell Convection.

The S (spectral), SP (spectral probe), and I) (Dryja) columns of Table 1 reveal their exactness

or spectral equivalence, respectively. Because iteration count is a threshold measurement, most of
the data is subject to 4-1 perturbation upon niodest adjustment of the convergence tolerances, but
the S and SP residuals at convergence are zero to machine precision. The deterioration of IP like

some negative power of h is evident on both the structurally symmetric (B1) and block triangular

(B2) sides of the table. The tangentiM preconditioner is the only one with markedly different

performance depending upon the structure of B. lie.re, as below, it is excellent in conjunction with

the block triangular form.

h-1

8 I 3 1 1 I 4 5 ,1 2 2 4

16 I 5 1 1 5 7 6 2 2 5
I

32 I 6 1 I 1 5 I 9 i 2 2 "5'1 '
Table 2: Same as Table 1, except for normal convection at

a Reynolds number of 16.

Structurally Symmetric Block Triangular
[ IP S SP D T--IP i SP" D T ]

51
5 I

5 i

5 I
m

Table 2, for a, nornial COliVection problenl, is sinlil_r to Table 1 except that IP improves slightly
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as each of the terms ,'131/1_-it At3 and A32A2-2l A23 being approximated by a diagonal matri_ becomes

less important relative to A33 because one of tile coupling matrices is small. For instance, if the
convection is from subdomain 1 into subdomain 2, AI3 and A32 are weak.

Struct u rally Sym metric Block Triangular
h -l IP S SP D T IP S SP D T

8 5 1 7 8 6 5 2 8 7 4

16 6 1 10 10 9 7 2 11 10 5

32 8 1 11 11 II 9 2 12 11 5

64 11 1 12 11 15 12 2 13 11 5

Table 3: Same as Table

at a Reynolds number of

1, except for tangential convection
16.

Tile importance of the D matrix in the spectral preconditioner is evident in Table 3 in which a

tangential convection problem is considered. The version of SP employed in this study approximates

the D in its definition as the identity; using the truc D here would reproduce the spectral results

in this constant coefficient c_e, just as in the previous two tables in which D = I anyway. Though

SP and D are spectrally equivalent, they require an order of magnitude more iterations than S, and

are surpassed by IP in the smaller problem range on the structurally symmetric side, and by the

tangential preconditioner on the block triangular side.

Structurally Symmetric Block Triangular
h -1 1P S SP D T IP S SP D T

8 4 1 7 8 7 5 2 8 8 6

16 5 l 9 10 9 6 2 10 9 6

32 7 l l0 10 12 8 2 11 10 6

64 9 l 10 10 15 l0 2 11 11 7

Table 4: Same as Table t, except for skew convection at a

Reynolds number of 16.

Table 4 contains the last of the constant coefficient test examples, featuring a skew convection

(inclined at 45 degrees relative to the interface). Overall results are not very different from the
purely tangential convection case. Most of tim entries in the skew table lie at or between cor-

responding entries in the normal and tangential tables. Those of the taalgentlal preconditioner,

however, are often worse in the intermediate skew convection case than at either extreme.
m

Structurally Symmetric Block Triansular
h -_ IP S SP D _] 'r IP S SP D T

8 5 4 5 6 6 5 5 6 6 5
16 6 4 6 6 8 7 5 ? 7 6

32 9 4 6 6 11 10 5 7 7 7

64 11 4 6 6 14 12 5 7 7 8

Table 5_ Same as T_tble 1, except for jet convection at

Pu;ynohls number of 16.
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The jet ca.serecordedin Tal)le 5 tends to level the preconditionerlandscapebecausethe
constantcoefficientapproxlntationof S is no longerexact. S remainsthe best techniqueas h -1

ix[creases, but its margin of superiority over other spectrally equivalent techniques (with D as a
nonadaptive extreme) is small.

_ h-_
8

16

32

64

Structurally Symmetric Block Triangular

IP S SP D T IP S SP D T
.... ! .......... i .....

5 ,t
6 i 5 5
9 J 5 5

II I 5 5

Table 6: Same as Table 1, except for cell convection at a

Reynolds number of 16.

I
5i 5 5 5 5 Z 5i
61 7 7 6 6 6 61

51 9 10 6 6 6 61
!

5111112 6 6 6 6 [

The cell case of Table 6 is tile greatest equalizer among the test cases, because the interface

cuts a zone of recirculation, i.e., there is normal flow across it in both directions, and none of the

methods holds an edge of superiority. Performance under the block tridiagonal preconditioner is

notably uniform for the last four methods.

4.2. Sensitivity to Reynolds Number

Tables 7 through 11 examine the influence of increasing Reynolds number. Values of Re of

0, 4, 16, 64, 256, and 1024 are considered at h -! = 6,t. Thus, the third row of each table in this

subsection is the same as the last row of the table of corresponding flow type in the first set,'and the

first row of each table is the same as the l_rst row of the pure diffusion case in Table 1. Progressing

down the rows of the table the nonsymmetry of the operator increases. Between rows,four and

five the convection terms begin to contribute more heavily than the diffusion terms to the diagonal
elements of A.

] - Structurally symmetric-- ..... Block Triangular

Re ! IP

0 11

4 10

16 7

64 5

256 3

1024 2

S SP l) T

1 l d 11
1 1 d 11

1 1 5 12

1 1 7 14

I 1 11 17

1 1 15 22

II" I S SP D I T
1212-- 2 5]4

11 I 2 2 5 4

8 I 2 2 5 5

6 I 2 2 7 6

4 I 2 2 10 9

3 2 2 12 16

Table 7: Iteration counts fi_r the norimd convection prob-

lem at a constant mesh parameter of 1/64 as a function of

R.cynoldshunLber for two iliff(_reilt iircc6nditioner structures
and live dilferent interface l)locks.

Table 7 shows that in the presence of col}st;ult normal convection , techlfiques S and SP remain
exact at any Re, while IP catches up at high Re, and D and T successively worsen. (For D, this

is tim drawback of finite h in a method derived for h -* 0.) Qualitatively, the trends are the same

for either preconditioner structure, although the tangential method continues to be much better in

the block triangular formulation.
The Achilles' heel of the spectral technique appears when there is strong convection tazlgential

to the interface, as seen in Table 8. In this limit in which [a/c I differs sufficiently from unity the
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Re IP

0 11

4 12

16 11

64 8

256 7

1024 5

Structurally Symmetric Block Triangular
S ',;1: D W IP S SP D T

J-q- _ --C 11 12 2 2 _ 4
1 7 7 14 13 2 8 8 5

l 12 11 15 12 2 13 11 5
1 ._C 15 14 9 2 21 15 3

- > 20 12 8 - > 19 1

> 26 8 6 - > 24 1

Table 8: Same as Table 7, except for tangential convection.

The hyphen denotes loss of precision, and the ">" more than
30 iterations.

latter terms ill D, which have this ratio raised to as much as (n - 1)st power, can approach the

machine epsilon (or its reciprocal, depending upon the direction of the convection). In reference to

(3.3), we note that for n = 64, (a/c)(n-1)/2 _ (,,,._,:h"_ 10 -16 when (a/c) ._ 10 (-32/83) _ 0.31. Under

upwind differencing, it only takes a cell Reynolds number of 2 to produce a ratio of 3 between the

upwind and downwind stencil coefficients a and c. Thus, Rec = 2 is the borderline of stability

for the spectral preconditioner with respect to tangential convection. In the tables, the Re = 64

row corresponds to a cell Reynolds number of unity, and tile Re = 256 row to a cell Reynolds

number of 4; thus, they straddle the transitiolL. GMRES iterations based on the spectral interface

preconditioner do terminate for the hyphenated e_ltries, but the residuals based on the resulting x

vectors shows complete loss of precision.

The spectral probe technique does not lose precision, because of the assumption that D = I;

however, a diagonal approximation for W-ICW is poor, and it simply takes too long to converge.

The Dryja preconditioner, which makes no atteml)t to adapt to the strong directionality of the

problem also deteriorates with Re. At low Re wh(,re M and C are close, the BI iteration count

is lower by one; but at high Re, where isotropic M is very different from unidirectional C, the B2

iteration count is better. The interfax:e probe technique meanwhile improves with Re as it captures

more of the increasingly diagonally dominant problem within its own sparsity structure. Finally, the

tangential technique is excellent for a tangentially dominated operator. The cross-diffusion which

it neglects becomes of negligible importance as the problem effectively decouples into independent

problems for All, A22, and A33 in which the upstream boundary condition is all important.

Re

0

4

16

64

256

1024

Structurally Symmetric Block Triangular

IP 11 IS -SP V_D 1 T IP S J SP D I T I

11 I t I 1 / 4111 12 2i-2 I 5---I 41

111 11 7 / 7 114 12 2[ 8 I 8 I 6 I
9 I 1 I 10 / 10 115 10 2 | 11 [ 11 [ 7 I

7 I ' I 13/14117 I 7 I 2 / 14114 / 8 I
I 41-1 1311_1191 51-/ 141x6/ 9 I

3 - 13 20 19 4 - 15 17 10

Table 9: Same as Table 7, except for skew convection.

Most of the obserwttions of the high Re tangential flow also apply to the skew flow in Table 9,

however, the latter differentiates between IP, which repeats its tendency to improve as Re grows,

and T, which no longer matches the physics of the problem, and is worse than IP, although it is

still superior to the Fourier-I)ased methods as a module of the block triangular preconditioner.
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Wealsonote that tile spe('t,'alprobete('hniquecapturesa significantpart of the pl_ysicsin
thiscase,adaptingto theco-dondnantnormalconvectionandtendingto aconstantiterationcount
withoutbreakingdown.It thusrescuesthe spectraltechniqueandindicateshowtheroblastnessof
thespectralpreconditionercallbemaintainedwith acompromisein efficiency.In ageneralpurpose
code,the elementsof the D matrix could differ from unity but be bounded artificially, allowing

partial tangential adaptivity with filll normal adaptivity.

StructurMly Symmetric Block Triangular
Re IP S SP D T IP S SP D T

0 11 1 1 4 11 12 2 2 5 4

4 11 3 4 5 14 12 4 5 6 6

16 11 4 6 6 14 12 5 7 7 8

64 10 6 9 9 14 11 7 10 10 9

256 9 7 ll 14 13 10 8 12 14 10

1024 9 - 20 19 14 10 - 21 18 11

Table 10: Same as Table 7, except forjet convection.

As in the spectral equivalence tests in Table 5, the jet case recorded in Table 10 tends to

diminish the extremes of preconditioner l)ehavior relative to the unifor,n skew convection case.

The IP and SP results worsen while the D and T methods nearly hold their own relative to Table 9.

The pure spectral method survives at a higher overall Reynolds number because the tangential
velocities at the interface are lower than the maximum core velocity of the jet, to which Re is

scaled.

Re

0

4

16

64

256

1024

Structt rally Symmetric
IP S

11 [

11 3

II 5

13 8

18 14

25 23

SP I)

3 4

5 5

7 8

11 14

16 23

T

11
II

11

13

16

26

Block Triangular
IP S SP D

12 2 2 5
12 4 4 5

12 6 6 6

14 9 8 9

19 15 12 14

26 23 17 23

Table 11: Same as Table 7, except for cell convection.

T

4

5

6

8

15

24

Again, the cell case of Table 11 is all equalizer lot" most of the methods; however, the perfor-

mance of the spectral probe technique is singularly good. This is easily explained as follows: the

average tangential velocity along the interface is zero because of the symmetry of Figure 2(f), so

D = I for both S and Sl ). However, S also employs an zero average for the normal velocity, whereas

SP adapts to strong inflow and outflow along opposite halves of the interface. The performance

of IP, which improves with Re in all previous tables, deteriorates in this table because no pair

of coupling matrices is weak (see comments on Table 2) under recirculation. Performances under

the structurally symmetric and [)lock tridiagonal schemes of the tangential preconditioner become

similaa" at high Re. The recirculating cell flow is in some sense a worst case for a single interface. If

the domain of Figure 2(f) is further decomposed by a vertical interface, putting a vertex in the cen-

ter, all four interfaces would be free of two-signed velocity components, and easier to precondition.

(The cross-point preconditioning then becomes an important subject.)
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Figure 3: Contour plots of the solution to V • eVu = f
with homogeneous Dirichlet boundary conditions and f = 1

for various ratios of the (piecewise constant) diffusivity in

the a,djoinhlg sub(lomalns. "Ratio" is ¢lawer/(upper and the

product etow_(,,pp_ is maintained at unity.

4.3. Pieeewise Constant Diffusivity

This subsection focuses on the effectiveness of the preconditioners in heterogeneous problems.

With reference to Figure 3, we assign a higher diffusivity in the lower domain than in the upper.

We report convergence results in two limits: fixed diffusivity ratio and increasing h-' (Table 12)

and fixed h -_ and increasing diffusivity ratio (Table 13).

The performance of the two probe and the tangential preconditioners in the terraced diffusivity

case in Table 12 is identic',d to their performance in the uniform case of Table 1. However, the
Dryja preconditioner is slightly worse and the spectral preconditioner (based on the arithmetically

averaged diffusivity) is much worse than in the uniform case. In fact, S is the worst preconditioner
in the terraced diffusion case while SP is the best, the probe supplying crucial information.

As the ratio of diffusivities increases for a fixed problem size, as in Table 13, all methods

asymptote monotonically to fixed convergence rates, as shown theoretically in [13]. The physical

interpretation of the asymptotically large diffusivlty ratio is that virtually all of the variation

of solution in response to the (fixed) fo,'cing occurs in the subdomain with the lesser diffusivity.

Figure 3 illiistratcs this phenonmnon. The contours are kinked at the interface since it is the normal

component of the diffusive flux, cVu, not Vu itself, which must balance on either side. The solution

along the interface is asyiiiptotically the boundary wdue of zero. The spectral probe method is a

singularly good performer in this limit.

4.4. Sensitivity to Aspect Ratio

Table 1,1 examines the constant diffusion case under aspect ratios ranging from 1:1 (a squat
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[
h-1

8

16

32

64

Structurally Symmetric Block Triangular
IP S SP D T IP S SP D

4 4 I 5 5 5 5 2 5

6 6 1 5 7 7 7 2 5

9 9 1 6 9 9 9 2 5

ll 12 1 6 ll 12 13 2 5

T

4

4

4
4

Table 12: Iteration counts for the step diffusion problem as

a function of mesh parameter for two different preconditioner
structures and five different interface blocks. Tile ratio of the

diffusion coefficients of tt,e two subdomains is 64.

Structurally Symmetric
Ratio IP S SP D T

1 9 1 1 5 9

4 9 7 1 5 9

16 9 8 1 5 9

64 9 9 1 6 9

256 9 9 1 6 9

1024 9 9 1 6 9

1P [__
9

9

9

9

9

9

Block Triangular
S SP D

2 2 5

8 2 5

9 2 5

9 2 5

9 2 6

9 2 6

g

T

4

4

4

4

4

4

Table 13: Iteration counts for the step diffusion problem at

a constant mesh parameter of 1/32 as a function of diffusiv-

ity ratio for two different preconditioner structures and five
different interface blocks.

rectangle with subdomains just two cells high) to 1:2 (a tall rectangle composed of two square

subdomaius). Note that the discrete length of the interface, n, remains constant at 63 in all

examples, while heights ml and m2 vary from 1 to 63.

(Ix, ly)

(1,_)

(1,_)
(1,_)

(1,1)

(1,2)

Structurally Symmetric
IP =S SP- --i)--

5 1 1 6

7 1 1 5

9 1 1 5

11 1 1 4

9 l 1 4

Block Triangular
T IP S SP D T

14 4 2 2 8 13

13 6 2 2 6 10

12 8 2 2 5 7

ll 10 2 2 5 5

ll 12 2 2 5 4
8 10 2 2 5 2

Table 14: Iteration counts for the pure diffusion problem

at a constant mesh parameter of 1/64 as a function of as-

pect ratio for two different preconditioner structures and five
different interface blocks.

We coafirm that S and SP are comt)letely adaptive to aspect ratio in this constant coefficient

problem, which is not true of any other method, including Dryja's. The tangential preconditioner

is understandably good when the narrow (more strongly boundary influenced) direction is the

tangential one, and poorer when this aspect ratio is reversed. The nonmonotonic character of

IP is interesting, showing that it adapts well to either extreme and is poorest in the balanced
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intermediatecase.

5. Conclusions

We conclude by pullit_g together some overall assessments of the preconditioners tested in the

previous section. Tlle interface probe techniqt, e is the most general purpose and robust of tile meth-

o(ls. It is always defilmble and adapts well to high Re aml extreme aspect ratio, but is nonoptimal

at high h -t and is occasionally tile worst method. It does very well in predominantly unidirectional

strongly convective flows. Generalizations to multiple interfaces, multiple components, and inexact

subdomain solves are straightforward, but not pursued herein (see [26]).

The spectral method is mathematically the method of choice asymptotically in h -1, where

physically well resolved problems should end up. ttowever, since it is based on a global constant-

coefficient approximation it does not perform well in heterogeneous problems. Furthermore, high

cell Reynolds numbers can cause it to go unstable, and flow fields whose actual values along the

interface differ greatly fi'om their average values are poorly represented. A stabilizing technique

was proposed which could preserve the robustness of the spectral method at high cell Reynolds

numbers, namely selection of an exponent base for D in (3.3) closer to unity than the true ]a/e[.

The spectral probe method is as good as the spectral method when W alone is a good ap-

proximation to the eigenvectors of C (i.e., low tangential convection). A D:modulated vqrsion of

spectral probe can be just as effective (and just as vulnerable to strong tangential convection) as

the pure spectral method in a constant coefficient problem. SP adapts better than S to normal
convection variation and it adapts perfectly to piecewise constant heterogeneities in the Jiffusivity.

As a "probe" method, it shares the coding disadvantages of IP.
The Dryja preconditioner is never exclusively the best method, but is as good as either S or SP

in a variable coefficient problem in the limit h --, 0, where the diffusive contributions to A dominate.

However, the extra cost of S is insignificant compared to D, and SP costs only extra subdomaln

solves in the pre-l)rocessing, so these techniques (suitably stabilized for tangential convection) will

almost always be preferable in applications.
All of the above techniques are relatively insensitive to the choice of the overall preconditioner

structure. The tangential interface precouditioner is an exception, for reasons yet to be explained

theoretically. It is much better under the block triangular form of the overall preconditioner, and

is very competitive with the other techniques under physically predictable circumstances, namely

tangentially dominant convection or narrow aspect ratio. It is also simple to code and has been
successfully generalized to multicomponent systems (see [22]).

We note that when exact subdomain solves are performed, the block triangular form of the

preconditioner, B2, with its one-directional flow of information from the separators to the interiors,

is almost always preferable to the structurally symmetric form B1 in terms of execution time,
since a full set of subdomain solves is saved at each iteration and the iteration counts are usually

comparable. The structurally symmetric form is also obviously useful when A is itself symmetric,

since it then admits preconditioned conjugate gradients rather than GMRES as the iterative solver.

Clearly, a user who understands his problem t)hysically and is willing to customize can do well

by choosing among a variety of interface preconditioner modules, perhaps using different ones on

differently resolved grids within the saute overall solution procedure, lIopes of finding a single "best"

method from among those considered must clearly bc dismissed, but the field is still young. It is clear

that general purpose adal)tivity will require some form of "probing" via subdomain solves; taken to

the limit, one obtains C directly. Such prot)ing has an associated cost comparable to an iteration

step, and must be undertaken conservatively. Future developments which iteratively improve the
interface preconditioning b_ed on accumulated subdomain solve data would be welcome, and so

would more hybrids along the lines of the sl)ectral probe which incorporate both analytical and

numerical data.
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